The links among the Sun systems: flares, CMEs, and solar winds

Miho Janvier

European Space Agency (Netherlands) Cesa Institut d'Astrophysique Spatiale (France)

@MihoJnvr

Credit: NASA/SDO/AIA/S. Doran

Chapters

Chapter 1: Observing the Sun's variability through the centuries Chapter 2: Flaring events, from observations to modelling Chapter 3: Understanding magnetic reconnection from small scales to large scales Chapter 4: CMEs in the solar wind

Chapter 1: Observing the Sun's variability through the centuries

A. The Sun's variability through the naked eyeB. The Sun's variability through a (ground) telescopeC. The space telescopes era

Key idea: our understanding of the Sun has changed over time.. with variability since at every layer of the Sun's atmosphere.

Chap 1 A. The Sun's variability through the naked eye

Chap 1 A. The Sun's variability through the naked eye

A. The Sun's variability through the naked eye

Iotal Solar Eclipse 2017

© 2017 Miloslav Druckmüller, Peter Aniol, S

\$1st record of the mention of the corona: Byzantin historian Leo Diaconus mentions the corona > Observation of total eclipse of 22 December 968 from Constantinople (now Istanbul, Turkey)

- *****Possible interpretation of a prominence description in Chinese court records
- ~28 BC by Chinese astronomers during the reign of EmperorCheng of the Western Han Dynasty.

\$1st unambiguous description of prominences =
Russian Chronicle of Novgorod
> Observation of 1 May 1185 solar eclipse

Chap 1 A. The Sun's variability through the naked eye

Shape of the overall coro changes over time

Possibility to see some interesting structures!

🍥 2017 Miloslav Druckmüller, Peter Aniol, Shadia Habbal 💛

Chap 1 A. The Sun's variability through the naked eye

Five Millerman Court of Solar Ecopeans (Espend) & Meeus)

Not all observers saw the same structure!

→First evidence of a coronal mass ejection

Material being expelled from the Sun and seen in as a disappearance in the corona

Chap 1 B. The Sun's variability through a (ground) telescope

Chap 1 B. The Sun's variability through a (ground) telescope

Carrington / Hodgson event (1859)

Clear step in understanding the variability AT the Sun and AT Earth with more global network

> Solar + magnetic observations, aurora observations all the way to Mexico, consequences on society (telegraph)

A good recent example: May 11 2024 event!

Chap 1 C. The space telescopes era

THE ELECTROMAGNETIC SPECTRUM

Space telescopes = Accessing wavelengths that we cannot detect from the ground

1st dedicated solar observatory on the 1st space station: SKYLAB (Nasa, 1973-1974)

> Recommendation: go see the Apollo telescope at the Udvar-Hazy museum (Washington DC)!

Skylab, 1970s

SDO, 2010

Yohkoh, 1991

Fe IX/X 171 A

He II/Si XI 304 A

SOHO/EIT, 1995

FE XII 195 A

Solar Orbiter, 2020

Chap 1 Chap 1 C. The space telescor 50 000 K

SDOIAIR @

00

ann

SOOMA @ Soon

SOOIRIA @ 160.0113

SDOJAJA @ 170.0nm

6000 K

2011 Sep 25 13:32:20

Chap 1 ➡ C. The space telescopes era

Active regions

All of these structures/features evolve over the solar cycle!

Coronal holes

Sources of fast solar winds => see S. Yardley's lecture

Quiet Sun

Chapter 2: Flaring events, from observations to modelling

A. Anatomy of a flare B. Eruptive vs confined flares C. Phenomenology D. Where does the flare energy come from?

Key idea: understanding the difference between flares and CMEs, and the fundamental structures where the flare energy is stored

Chap 2 A. Anatomy of a flare

« Flare »: sudden brightening in solar atmosphere

Flaring region seen in Extreme Ultraviolet (NASA/Solar Dynamics Observatory)

Qiu et al. (2004)

SDO/AIA 193 2011-02-15 01:53:32 UT

Masuda et al. (1994

Large number of non-thermal electrons (not detected in the non-flaring hot corona)

Chap 2 ► A. Anatomy of a flare

SXR high temperature ridges along outer or newly formed loops: heating takes place

GOES class	1-8Å pe W/m^2
А	$>10^{-8}$
в	$>10^{-7}$
\mathbf{C}	$>10^{-6}$
Μ	$>10^{-5}$
X	$>10^{-4}$
-	$>10^{-3}$

Classified by energy range \bigotimes (Depends on peak of X-ray flux)

Largest flare: Halloween flare (Nov 4 2003) 10³3 erg X28 Super flares? Up to 3.10^36 erg

6000 °C

50 000 °C 600 000 °C 1.25 M °C 10 M °C

If in the visible continuum = white light flare

Visible

193

171

Chap 2 B. Eruptive vs confined flare

Confined Eruptive Difference between 2 coronagraph images

2022-04-02T10:00:07.531

Coronal mass ejection seen by SOHO/LASCO

Chap 2 B. Eruptive vs confined flare

Events max	CME fract. ^a percent	Hα Area Millionths of hemisphere	$H\alpha$ class	1-8Å peak W/m ²	GOES class
	-	-	-	$>10^{-8}$	А
	-	$<\!200$	S	$>10^{-7}$	в
>2000	20	>200	1	$>10^{-6}$	\mathbf{C}
30	50	>500	2	$>10^{-5}$	Μ
10	90	>1200	3	$>10^{-4}$	X
few?/r	100	>1200	4	$>10^{-3}$	-

From *Heliophysics II*, eds. Schriver & Siscoe

CME fraction not always the same! (! Number could also be due to bias of detection)

Sometimes = failed filament eruption

Filaments

Prominences

Chap 2 **C.** Phenomenology

Hinode observations of a flare

Strong hard X-ray footpoints

Associated with strong magnetic field regions

2011 05 09120.00.51.989

Highly structured coronal loops (dense and hot) appear during flares (EUV/X): Flare Loops

(Top view, TRACE)

Highly structured "ribbons" develop at the bottom of loops Flare ribbons

Schmieder et al. 1995, Moore et al. 1995, Asai et al. 2003, Fletcher et al. 2011, Zhang et al. 2011, Warren et al. 2011

Chap 2 C. Phenomenology, confined vs eruptive

Circular ribbons

(Ribbons can also) be more complex)

Masson et al. (2009)

Schmieder (2013)

Energy of a (solar) flare

$10^{28} \sim 10^{33}$ erg

Schrijver et al. (2012)

We need:

A long duration energy storage phase

A sudden energy release mechanism

Alfvénic timescales \approx few minutes

A mechanism that can generate heat, kinetic energy, and non thermal (energetic) particles

Magnetic field drives the coronal activity:

$$\beta \sim E_{Th} / E_B \sim 2\mu P / B^2 < 1$$

Where is the magnetic "free" energy stored?

A few days (flares) to a few weeks (prominence eruptions)

How to release it?

Potential fields

MHD version of Ampère's law: $\mu J = \nabla x B$

Simplest configuration = no currents: $J_0 = \nabla x B_0 = 0$; $\nabla B_0 = 0; B_0 = \nabla \Phi$

Mag. field expressed as a **potential** vector, minimum energy = $E_{B0} = \iiint \frac{1}{2} B_0^2 dV$

ha	
	J. Where does the flar
	Potential fields
e	MHD version of Ampère's law: $\mu J = \nabla x B$
	Simplest configuration = no currents: $\mathbf{J}_0 = \nabla \mathbf{J}_0$
	Mag. field expressed as a potential vector, minim
	<u>Non-potential fields</u> $\mathbf{B} = \mathbf{B}_0 + \mathbf{B}_1$; ∇ . E
	$E_{B} = \iiint \frac{1}{2} \mathbf{B}_{0}^{2} dV + \iiint \frac{1}{2} \mathbf{B}_{1}^{2} dV + \iiint \mathbf{B}_{0} \cdot \mathbf{B}_{1} dV$

energy come from?

$\mathbf{x} \mathbf{B}_0 = 0$; $\nabla \mathbf{B}_0 = 0$; $\mathbf{B}_0 = \nabla \Phi$

num energy = $E_{B0} = \iiint \frac{1}{2} \mathbf{B}_0^2 \, dV$

 $B_1 = 0$; $\iint B_1 \cdot dS = 0$

na	p 2						
	L D.	Whe	ere	doe	es th	e flar	
	<u>Potentia</u>	l fields					Sec. A
	MHD ver	sion of A	mpère	e's law:	μ J = ∇	7 x B	
	Simplest	configura	ation :	= no cu	rrents:	$\mathbf{J}_0 = \nabla$	΄Χ
	Mag. field	d express	sed as	s a pot e	ential vec	tor, minim	N
	<u>Non-pot</u>	ontial fic	alde			•	in Factor
			<u>105</u>	$\mathbf{B} = \mathbf{E}$	\mathbf{D}_1	, 🗸	B
	E _B = ∭ 1	$/_2 \mathbf{B}_0^2 \mathrm{dV}$	+ ∭ ¹ ⁄	$\mathbf{B} = \mathbf{E}$ $\frac{1}{2} \mathbf{B}_1^2 \mathrm{d}$	$\checkmark + \iiint \mathbf{B}_0$.	, v . L B ₁ dV	B
	E _B = ∭ 1 =	$B_{\rm B0}^2 \mathrm{dV}$	+ ∭ ¹ ⁄ +	$\mathbf{B} = \mathbf{E}$ $2 \mathbf{B}_{1^{2}} d$ E_{B1}	$ \sqrt{2} + \iiint \mathbf{B}_0 $ $ + \iiint (\nabla \mathbf{C}) $, ∨ . I B ₁ dV ⊉). B ₁ dV	B
	E _B = ∭ 1 =	$\sim B_0^2 dV$ E_{B0} E_{B0}	+ ∭ 1⁄ + +	$\mathbf{B} = \mathbf{E}$ $\mathbf{E}_{B1}^{2} \mathbf{d}$ \mathbf{E}_{B1} \mathbf{E}_{B1}	$V + \iiint \mathbf{B}_0$ $+ \iiint (\nabla \mathbf{C}$, $\nabla \mathbf{B}_1 dV$ $\Phi \mathbf{B}_1 dV$ $(\Phi \mathbf{B}_1) - \nabla$	
	$E_{B} = \iiint 1$	$\frac{2}{2} \frac{B_0^2 dV}{E_{B0}}$ E_{B0} E_{B0}	+ ∭ 1/ + +	$B = E$ $2 B_1^2 d$ E_{B1} E_{B1} E_{B1}	$V + \iiint B_0$ $+ \iiint (\nabla C$ $+ \iiint [\nabla .$, $\mathbf{B}_1 \mathrm{dV}$ $\mathbf{\Phi} \mathbf{B}_1 \mathrm{dV}$ $(\mathbf{\Phi} \mathbf{B}_1) - \mathbf{\Phi}$ $\mathbf{\Phi} \mathbf{B}_1 \mathrm{dV}$	

E_{B1} E_{B0} + > E_{B0}

energy come from?

$\mathbf{B}_0 = 0$; $\nabla \mathbf{B}_0 = 0$; $\mathbf{B}_0 = \nabla \Phi$

 $\text{Im energy} = \frac{1}{2} E_{B0} = \frac{1}{2} B_0^2 \, \text{dV}$

; $\iint \mathbf{B}_1 \cdot d\mathbf{S} = 0$ = 0

$$(\nabla \cdot \mathbf{E}_{i}) \neq \mathbf{v} \qquad \blacktriangleright \text{ divergence-free}$$

Stoke's theorem

divergence-free (integral form)

Current-less **B**-field = lower bound of energy for a given B_z^{phot}

If we assume a steady state, with negligible gravitational forces and pressure gradients (low-β corona), we then obtain a force-free field, with $J \times B = 0$. Force-free condition —> field and currents are aligned. Then, $\nabla x \mathbf{B} = \alpha \mathbf{B}$. α constant along field lines

3 classes of force-free fields (2 are current-carrying)

If we assume a steady state, with negligible gravitational forces and pressure gradients (low-ß corona), we

Force-free condition —> field and currents are aligned. Then, $\nabla x \mathbf{B} = \alpha \mathbf{B}$. α constant along field lines

Building up the energy, two scenarios

Sub-photospheric emergence: Current carrying flux tube from convection \checkmark zone

Pb: How are flux tubes traveling the whole convection zone? How do they cross the photosphere/chromosphere? Only 25% of loops reach the chromosphere! (see. L. Bellot-Rubio's lecture)

Slow photospheric motions

Twisting of 1 or 2 of the polarities

Shearing motions // inversion line

Energy stored in closed field lines only \bigotimes

Evacuation of E_B at Alfvénic speeds in open fields

Chap 2 D. Where does the flare energy come from?

Clear evidences of J//B in different events, from different observations

MHD simulation (sheared bipole) Aulanier et al. (2010)

Chap 2 D. Where does the flare energy come from?

Clear evidences of J//B in different events, from different observations

MHD simulation (sheared bipole) Aulanier et al. (2010)

& Kliem (2009)

McKenzie & Canfield (2008), Savcheva et al. (2009), Green

Chap 2

Clear evidences of J//B in different events, from different observations

MHD simulation (sheared bipole) Aulanier et al. (2010)

Chap 2 D. Where does the flare energy come from?

Flux ropes = current carrying structures

SDO / AIA

Flux ropes are expected to be at the heart of solar eruptions But little direct evidences, as only few magnetic field measurements in the corona.. DKIST?)

prominence

B extrapolation

See reviews: Marubashi (2000), Watanabe et al. (2004), Chen (2017), Gopalswamy et al. (2018)

flux rope formation

ominence eruption

flux rope instability

SDO / AIA

Chapter 3: Understanding magnetic reconnection from small scales to large scales

A. Magnetic reconnection as a core mechanismB. Magnetic reconnection without null pointsC. Testing the hypothesis w/ observationsD. 3D model and unsolved problems

Key idea: understand the development of the standard flare model, its 3D extension, comparisons between models and observations
Chap 3 A. Magnetic reconnection as a core mechanism

We needed a model for solar flares (available energy is predominantly magnetic in the Sun's corona)

Early developments by: Parker (1957, 1963), Sweet (1958), Syrovatskii (1981) See reviews: Zweibel & Yamada 2009, Yamada 2010

> Idea of reconnection (Dungey 1953): Field near neutral point is unstable
> → Produce current sheets (Energy storage!)

Magnetic energy => heat (thermal) + non thermal energy + kinetic energy

Chap 3 A. Magnetic reconnection as a core mechanism

We needed a model for solar flares (available energy is predominantly magnetic in the Sun's corona)

Early developments by: Parker (1957, 1963), Sweet (1958), Syrovatskii (1981) See reviews: Zweibel & Yamada 2009, Yamada 2010

2D separatrices

Idea of reconnection (Dungey 1953): Field near neutral point is unstable
→ Produce current sheets (Energy storage!)

Sweet **1956 +** Parker **1957:** Magnetic energy conversion in current sheets **powers flares**

4 connectivity domains

Magnetic energy => heat (thermal) + non thermal energy + kinetic energy

Chap 3 A. Magnetic reconnection as a core mechanism

Magnetic reconnection leads to: ⇒ Flux rope + post-flare loops ⇒ Two flare ribbons

Carmichael (1964) Sturrock (1966) Hirayama (1974) Kopp & Pneumann (1976) Forbes & Malherbe (1986)

Priest & Démoulin **1995** Démoulin et al. 1996-1997

Reconnection can be (and is) defined physically as regions where ideal MHD breaks down (where B is distorted)

Since then: numerous evidences of flaring activity associated with quasi-separatrix layers:

... but plenty of evidences that flaring happens w/o null points!

Idea of reconnection happening in regions of strong magnetic field distorsion: « Quasi » separatrix layers

See: Démoulin et al. (1996), Titov et al. (2002), Pariat et al. (2012) for a mathematical definition of the "squashing factor" defining these QSLs

Chap 3 B. Magnetic reconnection without null points Numerical simulation of a flux rope eruption

OHM code, $\beta=0$ simulation of eruptive flares

Janvier, Aulanier, Pariat & Démoulin (2013)

Reconnection takes place (but no null points)

Chap 3 B. Magnetic reconnection without null points Numerical simulation of a flux rope eruption

OHM code, $\beta=0$ simulation of eruptive flares

Janvier, Aulanier, Pariat & Démoulin (2013)

QSLs: **Preferential locations for** electric current build-up

 $\mathbf{J} = |curl \mathbf{B}|$ electric currents

Chap 3 B. Magnetic reconnection without null points

-2

Vertical cuts

Kliem et al. (2013)

Janvier et al. (2013)

Collapse of the current layer (= thinning) Prediction from the model (not yet observable!)

Chap 3 B. Magnetic reconnection without null points

Kliem et al. (2013)

-6

 $^{-4}$

-8

-10

-8

Chandra et al. (2009)

Chap 3 B. Magnetic reconnection without null points

Kliem et al. (2013)

J-shape structure is indicative of the presence of a flux rope!

Ha-MSDP (Meudon)

Chandra et al. (2009)

Démoulin, Priest & Lonie 1996

Chap 3 C. Testing the hypothesis w/ observations

Chap 3 C. Testing the hypothesis w/ observations

 $B(x,y) \Rightarrow Current maps J_z(x,y) \sim curl |B|_z$ (12 min cadence w. HMI instrument aboard the NASA Solar Dynamics Observatory mission)

Photospheric vertical currents traces (or "ribbons") of the 3D current "layer"

Chap 3 C. Testing the hypothesis w/ observations

Electric current I

Increase of electric current = collapse of the current layer

Janvier et al. (2014, 2016)

Chap 3 ► D. 3D model and unsolved problems

Janvier et al. (2014)

Flux rope + flare loops evolution

3D current "layer" (implication for reconnection + observed photospheric current evolution)

D. 3D model and unsolved problems But... There are still knowledge gaps

Pb: Details of energy transfer from global scale to small scale still not understood... Current layer is given by the large-scale magnetic field (Mm) but dynamics happen at much smaller scales (m)

Chap 3 **D.** 3D model and unsolved problems But... There are still knowledge gaps

Pb: Details of energy transfer from global scale to small scale still not understood... Current layer is given by the large-scale magnetic field (Mm) but dynamics happen at much smaller scales (m)

Quasi periodic pulsations

Inglis et al. 2023

Total Solar Eclipse 2009

© 2009 Miloslav Druckmüller, Peter Aniol, Vojtech Rušin, Ľubomír Klocok, Karel Martišek, Martin Dietzel

hagnetic fields Current layers

spheric motions)

connection, / changes

' along nology

Particle acceleration, waves

© 2000 Miloslay Druckmüller, Peter Aniol, Vojtech Rušin, Ľubornír Klocok, Karel Martišek, Martin Dietzel But What about shocks, Waves, magnetic islands, turbulence? (To be followed up on...)

Energy deposition is different for ions and electrons

« >50% of the magnetic energy is converted to particle energy, 2/3 of which transferred to ions and 1/3 to electrons. »

Also confirmed in MMS mission (see Toledo-Redondo et al. 2017)

Chapter 4: CMEs in the solar wind

A. CME - ICME link B. Statistics on properties C. Interplay with the solar wind (a multi spacecraft analysis) D. Towards a CME model? E. Multi-scale flux ropes... and reconnection problem again!

Key idea: long and spatially diverse surveys of CMEs help understand their properties, but we lack datapoints + the role of reconnection in forming heliospheric flux ropes

2003 Oct 25 00:00:12

Heliospheric imagers

Chap 4 A. CME - ICME link Remote-sensing

Forbes, 2000

Krauss et al. 2015

CME front formed due to plasma-pileup (snowplow effect) / shock compression CMEs are low-density, difficult to track structures

See reviews, e.g. Chen 2011, Kilpua et al. 2017

Derived parameters (i.e. speeds, widths, locations) measured from single v/p, with projection effects problems.

(Hundhausen, 1993, Burkepile et al. 2004, Cremades & Bothmer, 2004)

Chap 4 A. CME - ICME link In situ

Adapted from Palmerio et al.

Zurbuchen & Richardson 2006

Chap 4 - A. CME - ICME link In situ

Interplanetary CMEs criteria:

See a summary of ICME in-situ signatures in: Wimmer-Schweingruber et al. 2006; Zurbuchen & Richardson 2006

Enhanced ion charge states (e.g. Fenimore 1980)

Enhanced helium abundance (e.g. Borrini et al. 1982) $N_{alpha}/N_{p}>0.8$ (e.g. Liv et al. 2005)

Counter-streaming suprathermal (>80 eV) electron beams (e.g. Gosling et al. 1987)

Proton temperature lower than SW (e.g. Gosling et al. 1973, Wang et al. 2005) $T_P/T_{expected in SW} < 0.5$

Low proton plasma beta

Stronger magnetic field than SW with low variance

Smooth and large rotation of MF

Flux rope = twisted magnetic structure

Magnetic clouds (MCs) criteria

Burlaga et al. 1981, Klein & Burlaga 1982, Lopez & Freeman 1986, Burlaga 1988, Lepping et al. 1990

Chap 4 A. CME - ICME link

et al. (2004), Chen (2017), Gopalswamy et

Flux ropes are expected to be at the heart of solar eruptions

Chap 4 B. Statistics on properties

Studies on: Expansion of the Magnetic Ejecta, profiles, statistics of mag. intensities

Multi-probes situated at different distances from the Sun allow looking at the evolution of ICMEs Case studies Sun - IP Case studies IP-IP Statistics

Expansion rate, magnetic field budget, comparison of flux rope orientation, ...

Nackwacki et al. 2011

Good et al. 2018: compare profiles of ICMEs seen at MESSENGER and STEREO B (applying models of expansion)

Winslow et al. 2015: statistical studies on magnetic field intensities + comparison with other scaling laws.

Chap 4 B. Statistics on properties

BUT: not coherent results are still found...

Dependence of the maximum (mean) magnetic field strength decreases with heliocentric distance as $r_{-1.24\pm0.50}(r_{-1.12\pm0.14})$

in disagreement with previous studies.

Expansion of the CME appears neither self-similar nor cylindrically symmetric (distortion due to solar wind?)

Davies et al. 2021

Chap 4 B. Statistics on properties

Masias-Meza et al. 2016 See also: Yermolaev 2012, Badruddin 2016, Rodriguez 2016

Superposing all **ICMEs together** underlines their typical features (known as the Superposed Epoch Analysis).

Chap 4 ► B. Statistics on properties Statistics: ACE data (L1) over 20 years

Superposing all ICMEs together underlines their typical features

Shown here: the mean (yellow), median (red) and blue(most probable value) of the distributions in each time bins

-Different profiles depending on the relative speed o

-sheath region, ME magnetic field asymmetry different for relatively fast events

-sheath region compressed by both shock + ME in relatively fast events

Shows the interaction between ICMEs and solar wind

Chap 4 \frown C. Interplay with the solar wind (a multi spacecraft analysis) Using planetary missions for multi-vantage point statistics

MESSENGER ICME detections: from January 2009 till April 2015. 41 clean ICMEs

VENUS EXPRESS

ICME detections: from July 2006 till December 2014. 67 clean ICMEs

ACE

ICME detections: 20y of data. 44 clean ICMEs with a clear magnetic cloud.

Chap 4 L C. Interplay with the solar wind (a multi spacecraft analysis)

- Jump in sheath more important at 1 AU (sheath buildup)
- Thicker sheath + bigger ejecta at 1 AU (sheath build-up + expansion)
- Asymmetry more pronounced at Mercury

Chap 4 C. Interplay with the solar wind (a multi spacecraft analysis)

ACE data (at L1)

Found a correlation between magnetic field intensity in the sheath and the ICME speed

We can use the magnetic field as a proxy for the speed (since we don't have the speed for MESSENGER and Venus Express)

600

Chap 4 • C. Interplay with the solar wind (a multi spacecraft analysis)

SLOW ICMES

Janvier et al. (2019)

Chap 4 D. Towards a CME model?

- Investigate interactions CME-Solar Wind (what mechanisms responsible for different profiles?)
- Cohesion of the magnetic field evolution
- Sheath + Shock evolution

PSI Group: Lionello et al, Downs et al, Torok et al, ... 3D MHD model w/ Pluto (Regnault 2022)

*Y

1.0e-01

- 0.08

- 0.06

0.04

- 0.0e+00

Chap 4 D. Towards a CME model? Different flux rope initiation configurations: different B_{max} SolO "strength" + speed

Reproduces evolution of B field w/ distance

Synthetic observations: agreement w/ speed

Chap 4 D. Towards a CME model?

But! All structures w/ small location angle (near the nose) + low impact parameter

Difficult to determine the 3D magnetic structure of an ICME because of the degeneracy of unique in situ profiles for each ICME.

thick1 thin3 15 Ro Sides 30 Ro ---- Fit 50 Ro 210 Ro

Chap 4 E. Multi-scale flux ropes... and reconnection problem again! Are small flux ropes (few minutes ~ few hours) = larger flux ropes (few hours ~ days, most generally ICME flux ropes)?

- Similar speed (300 600 km/s)
- Sheath (not always)
- Signatures of magnetic reconnection (Tian et al. 2010, Lavraud et al. 2014)
- Same fitting models work (Feng et al. 2008, Lepping & Wu 2010) Same same

<u>Cartwright & Moldwin 2008</u>: Example of a SFR of ~ a few hours

		~	-
1	<u> </u>		-
`			-
	~		
1			
	····		
		-	-
1			-
~	~	~~	_
1010	10-3	·	

Chap 4 ► E. Multi-scale flux ropes... and reconnection problem again! Are small flux ropes (few minutes ~ few hours) = larger flux ropes (few hours ~ days, most generally ICME flux ropes)?

- Similar speed (300 600 km/s)
- Sheath (not always)
- Signatures of magnetic reconnection (Tian) et al. 2010, Lavraud et al. 2014)
- Same fitting models work (Feng et al. 2008, Lepping & Wu 2010) Same same

BUT

But different...

- Plasma beta (lower for MC)
- Proton temperature compared with the solar wind (lower for MC)
- Field strength (stronger for MC)
- Size distribution?

<u>Cartwright & Moldwin 2008</u>: Example of a SFR of ~ a few hours

		~	-
1	<u> </u>		-
`			-
	~		
1			
	····		
		-	-
1			-
~	~	~~	_
1010	10-3		

Chap 4 E. Multi-scale flux ropes... and reconnection problem again! Are small flux ropes (few minutes ~ few hours) = larger flux ropes (few hours ~ days, most generally ICME flux ropes)?

Results from a statistical analysis of several catalogues

MCs

 λ

Similar proportion of FRs with North-South or South-North Bz

no cycle dependency

Similar correlations between flux rope parameters (e.g. axial field strength w/ speed, radius)

Similar coronal ejection processes?

Similar distribution of location angle lambda = where we cross the FR

Janvier, Démoulin & Dasso (2014a, b)

Comparison of different flux ropes catalogues

Seems to be 2 interplanetary FR populations

But small flux ropes could come from the corona (e.g. blow-out jets? Reconnected flux leading to SFR?)

E. Multi-scale flux ropes... and reconnection problem again!

Small flux ropes with a power law

Magnetic clouds with a Gaussian distribution

A Survey of Interplanetary Small Flux Ropes at Mercury

- SFRs observed at Mercury (MESSENGER data)
- SFR occurrence frequency is nearly 4x higher > 1au
- 2 SFR populations in data set: -> generation in a quasi-periodic formation process near the heliospheric current sheet (appear in clusters, short interval between them, near the HCS) -> the other formed away from the current sheet in isolated events (slightly bigger than the others)

E. Multi-scale flux ropes... and reconnection problem again!

77

What are the possible formation processes?

- •reconnection across the HCS (e.g. Moldwin et al. 2000)
- •at the Sun w/ stream blobs (Sheeley et al. 2009)
- periodic density structures (Viall et al. 2008)

E. Multi-scale flux ropes... and reconnection problem again!

Murphy et al (2020)

78

Chap 4 E. Multi-scale flux ropes... and reconnection problem again! A possible connection to switchbacks?

Figure 3. Dynamics of the FRs merging shown in the out-of-plane current J_T in the R–N plane.

Rapid polarity reversals of the radial heliospheric magnetic field, now routinely seen with Parker Solar Probe (but also Ulysses, Helios, ..)

> Creation + merging of flux ropes at the (coronal base of the) HCS by interchange reconnection

—> Would lead to coronal signatures of SFRs

See e.g. Réville et al. 2020, Drake et al. 2021, Agapitov et al. 2022,

A possible connection to switchbacks?

Rapid polarity reversals of the radial heliospheric magnetic field, now routinely seen with Parker Solar Probe (but also Ulysses, Helios, ...)

Structures seen in PSP as switchbacks most probably converted to a large flux rope and observed by Solar Orbiter

Fedorov et al (2021)

E. Multi-scale flux ropes... and reconnection problem again!

Chap 4 E. Multi-scale flux ropes... and reconnection problem again! "Monster plasmoids" have been proposed in secondary tearing instability reconnection,

with a power law...

Fedorov et al (2021)

Samtaney et al (2009)

Loureiro et al (2012)

Janvier et al (2014)

Chapter 1: Observing the Sun's variability through the centuries

A. The Sun's variability through the naked eyeB. The Sun's variability through a (ground) telescopeC. The space telescopes era

Key idea: our understanding of the Sun has changed over time.. with variability since at every layer of the Sun's atmosphere.

Chapter 2: Flaring events, from observations to modelling

A. Anatomy of a flare B. Eruptive vs confined flares C. Phenomenology D. Where does the flare energy come from?

Key idea: understanding the difference between flares and CMEs, and the fundamental structures where the flare energy is stored

Chapter 3: Understanding magnetic reconnection from small scales to large scales

A. Magnetic reconnection as a core mechanismB. Magnetic reconnection without null pointsC. Testing the hypothesis w/ observationsD. 3D model and unsolved problems

Key idea: understand the development of the standard flare model, its 3D extension, comparisons between models and observations

Chapter 4: CMEs in the solar wind

A. CME - ICME link B. Statistics on properties C. Interplay with the solar wind (a multi spacecraft analysis) D. Towards a CME model? E. Multi-scale flux ropes... and reconnection problem again!

Key idea: long and spatially diverse surveys of CMEs help understand their properties, but we lack datapoints + the role of reconnection in forming heliospheric flux ropes

