
Mesoscale processes in magnetosphere–
ionosphere coupling – Part I

Maxime Grandin1

1Finnish Meteorological Institute, Helsinki, Finland

L’Aquila International School, Italy
15 May 2025



2/26L’Aquila International School – Maxime Grandin – Mesoscale processes in MI coupling (Part I) – 15 May 2025

Why are mesoscales such a hot topic?
● Transition between the global scales (system-size) 

and the microscales
➢ Complex physics, coupled processes

● Relevant to space weather: regional impacts, local 
peaks

● Elusive and challenging to measure and simulate

● New tools (instruments, models, methods) are 
enabling their study better than before
➢ constellations of spacecraft
➢ networks of ground-based instruments
➢ cutting-edge global models (ion-kinetic description, 

adaptive resolution, coupled models...)

Video credit: ESA/NASA

Adapted from Nishimura et al. (2024)
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What are mesoscales in this lecture?
● Temporal scales: minutes / tens of minutes

➢ Way shorter than geomagnetic storms (days)
➢ Also shorter than substorms (couple of hours)

● Spatial scales in the ionosphere: 10–1000 km
➢ auroral arc width: ~5–30 km
➢ auroral oval latitudinal extent: from ~3° (~300 km, quiet time) to > 10° (~1100 km, storm)
➢ 1 h in magnetic local time (MLT) at auroral latitudes (~65°): ~700 km 

● Spatial scales in the magnetosphere: hundreds of km to a few Earth radii (1 RE = 6371 km)
➢ dayside magnetopause standoff distance: ~10 RE

➢ magnetotail extent on the nightside: > 100 RE

➢ magnetotail current sheet thickness: 0.1–1 RE (depending on conditions)

Credit: NASA Credit: Vlasiator
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Outline
Part I: Introduction to magnetosphere–ionosphere (MI) coupling

1. Brief overview of ionospheric physics
2. MI coupling mechanisms
3. Studying mesoscale processes in the ionosphere

Part II: Examples of mesoscale processes in MI coupling
1. Dayside couplings
2. Bursty bulk flows and auroral streamers
3. Mesoscale auroral forms
4. Optical emissions at subauroral latitudes
5. Concluding words
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The neutral atmosphere
● The neutral atmosphere is divided into 4 regions, based on the temperature profile: troposphere, 

stratosphere, mesosphere, and thermosphere

Grandin (2017, PhD thesis)

● 0–100 km altitude: well-mixed gas (78% 
N2, 21% O2, 1% other)

● > 100 km: composition changes (e.g. O, 
NO, H, He...), each species has its own 
scale height

● Seasonal variations, global circulation 
patterns, atmospheric waves...

● Temperatures and densities are 
sensitive to solar activity (esp. in the 
thermosphere)
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Atmospheric dynamics and chemistry are complex...

Pedatella et al. (2018, Eos)

...but this is not the topic of this lecture!
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Formation & structure of the ionosphere
● Solar EUV and X-ray photons can dissociate molecules and ionise neutrals
● The ionosphere forms as the result of the balance between (photo)ionisation, chemistry, and transport

Grandin (2017, PhD thesis)

● We divide it in 3 regions based  on the electron density 
profile: D, E and F

● Weakly ionised gas: ne/nn ≈ 0.1% at the main peak

● D region (60–90 km): positive and negative ions, 
disappears at night

● E region (90–150 km): mainly molecular ions (O2

+
 and 

NO
+
), very depleted at night (except...)

● F region (>150 km): often exhibits two peaks 
(F1: molecular and F2: atomic), main peak near 300 km
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Ionospheric currents: a result of collisions

Figure credit: T. Sarris (Daedalus Report for Assessment, ESA, 2020) Va bene, but how do we get electric fields in the ionosphere?
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The magnetosphere–ionosphere system
● The ionosphere is strongly coupled to the 

magnetosphere through multiple 
processes

● Ionospheric ions escape and populate the 
inner magnetosphere

● Magnetospheric electrons and protons can 
precipitate into the ionosphere

● Current systems couple both regions 
together

● Magnetospheric plasma convection (cf. 
Dungey cycle) is mirrored in the 
ionosphere

The ionosphere is hereFr
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Zoom onto atmosphere/ionosphere processes

Figure credit: 
Joe Grebowsky
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The Dungey cycle
Idealised case of purely southward IMF

Hughes (1995)

● Because of the frozen-in condition, the 
magnetospheric convection is mirrored in 
the polar cap ionosphere

● With purely southward IMF, we have a 
two-cell convection pattern

● For real-life scenarios, the convection cells 
can be distorted (effect of By) or there can 
be four convections cells (northward IMF)

Credit: SuperDARN Canada
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Polar cap convection & ionospheric current patterns

Figure credit: E. Doornbos (Sarris et al., 2023)

So: how do we get electric fields in the ionosphere?

Frozen-in condition: E = –V × B
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Ionospheric conductivities
● Conductivity tensor, three terms: σ//, σP, σH

● Unit: S/m

● Current density: j = σ// E// + σP E⟂ – σH E × B/B

● Sources: solar EUV, galactic cosmic rays, particle 
precipitation

● Conductances Σ = height-integrated conductivities σ

● Pedersen conductivity: a key parameter in Joule heating, 
qJH = j · E = σP (Eʹ + u × B)2      [in W/m3]
     with u the neutral wind velocity, and
      E (Eʹ) the electric field in the neutral (Earth-fixed) frame Yamazaki & Maute (2017)
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Particle precipitation
● Magnetospheric electrons and protons precipitate 

into the ionosphere, mainly within the auroral oval
● Sources: injection via reconnection, pitch-angle 

scattering due to wave–particle interactions and B-
field line curvature

Figure credit: NOAA/OVATION-Prime

● Energy range: eV to MeV
● Effects: conductances, optical 

emissions, chemistry, heating
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Waves in the inner magnetosphere
● ULF waves (1 mHz – 10 Hz)

– field line resonance, geomagnetic 
pulsations

● VLF waves (10–30 kHz)
– kinetic instabilities
– structured (chorus) or unstructured (hiss)
– crucial role in radiation belt physics

Li & Hudson (2019)

Manninen et al. (2021)
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Magnetospheric vs auroral substorm
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Ground-based instruments: Radio

Shi et al. (2022)

Han et al. (2019)

McKay et al. (2015)

SuperDARN
Imaging riometer

Incoherent scatter radar
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Ground-based instruments: Magnetometers
● Components: X (north), Y (east), Z (down)
● Signatures of substorms, geomagnetic pulsations...
● Networks: IMAGE (Fennoscandia), SuperMAG (world), INTERMAGNET (world)
● Determination of equivalent currents

Partamies et al. (2017)Grandin (2017, PhD thesis)
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Ground-based instruments: Optics

Scanning Doppler imager

Figure credit: M. CondeM
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All-sky imagers

Data credit: University of Calgary

keogram: N–S slice vs time



23/26L’Aquila International School – Maxime Grandin – Mesoscale processes in MI coupling (Part I) – 15 May 2025

Citizen science to study mesoscale aurora
● Traditional optical instruments 

are most of the time either all-sky 
cameras or narrow-field imagers

● Commercial cameras enable 
skilled photographers to produce 
science-grade optical data 
particularly well-suited to 
studying mesoscale structures 
(and smaller!)

● Ongoing efforts aim to leverage 
citizen science to investigate 
optical phenomena, especially at 
subauroral latitudes

Dahlgren et al. (2008)

Credit: University of Calgary

Semeter et al. (2020) [photographers: Alexei Chernenkoff, 
Shawn Malone, Stephen Voss, and Alan Dyer]
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Satellite observations

Adapted from Reidy et al. (2018)
Adapted from Grandin et al. (2024)

Adapted from Nishimura et al. (2019)

In situ at LEO [e.g. Swarm]

Imaging at LEO 
[e.g. DMSP/SSUSI]

Imaging from the 
magnetosphere 
[e.g. SMILE/SXI]

In situ in the 
magnetosphere 

[e.g. THEMIS]

Alqeeq et al. (2024)
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Numerical simulations

Figure credit: V. Koikkalainen

Global magnetospheric models 
[e.g. GAMERA, Vlasiator]

Global atmospheric models [e.g. WACCM]

Figure credit: E. Doornbos (Daedalus Report for Assessment, ESA, 2020)

Adapted from Lin et al. (2021)

Coupled models of geospace [e.g. MAGE]

Sorathia et al. (2020)
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To be continued...

maxime.grandin@fmi.fi 

mailto:maxime.grandin@fmi.fi
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