

Join at menti.com | use code 3384 4120

Menti

Magnetopause

Choose a slide to present

Large-scale confinement (magnetopause)

Chapman & Ferraro (1931)

Fig. 4-Meridian section

Fig. 5-Equatorial section

Join at menti.com | use code 3384 4120 Menti C D Magnetopause Choose a slide to present Where is the nose of the magnetopause in Earth Radii? Earth Sun ⑤ Ø Ø Ø ⊞

$$r^6 = \frac{2\mu_0}{\rho v^2} \left(\frac{M_E}{4\pi}\right)^2$$

μ_0	$4 \pi \times 10^{-7}$
V	500 km/s
n	5 cm ⁻³
m_p	1.67 x 10 ⁻²⁷ kg
M _E	$8.05 \times 10^{22} A m^2$
R_{E}	6371 km

Dunlop et al. (2002)

Haaland et al. (2014)

Spatial variations in the boundary

Magnetopause speed, Vn [km/s]

Current density [nA/m2]

Haaland et al. (2014)

Dynamics of change

A wavy boundary

Coupling to internal waves

Xie et al. (2023)

Boundary waves from flowing plasma

Sorathia et al. (2020)

Plasma intrusion from boundary waves

Large-scale magnetic coupling

Small-scale physics of reconnection

Where can reconnection happen on the magnetopause?

Trattner et al. (2012)

Is reconnection steady?

Holijoki et al. (2019)

What is SMILE?

- Next ESA/CAS mission to study Earth's magnetosphere
- Will image the inputs and outputs of MI coupling
- A cross-over between X-ray astronomy and heliophysics
- Objectives:
 - What are the fundamental modes of the dayside solar wind/ magnetosphere interaction?
 - What defines the substorm cycles?
 - How do CME-driven storms arise and what smile is their relationship to substorms?

IMAGING EARTH'S MAGNETIC ENVIRONMENT

An unprecented global magnetosheath view

Image credit: Carter/Sembay/Forsyth

Large scale driving leads to cross-scale coupling

- Interaction between incoming plasma and Earth's magnetic field creates a boundary – the magnetopause
- The magnetopause varies in location and thickness
- The magnetopause moves, transmitting energy into the magnetosphere via ULF waves
- The magnetopause breaks by KH instability and reconnection, allowing plasma entry into the magnetosphere at small to large scales
- Reconnection may be steady or vary on short time scales

To be continued...