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A tale of two solar active regions: which one is the “bad”
one?

NOAAAR 11093, Aug 2010 NOAAAR 11158, Feb 2011

» The one on the right was way more flaring than the one on the left

> If you guessed the one on the right, good for you! Now, quantify your lucky guess.
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Solar flares: what are they?

Solar flare (American Heritage Dictionary): a sudden eruption of magnetic energy released on or near the surface of the Sun,
usually associated with sunspots and accompanied by bursts of electromagnetic radiation and particles
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Major flares stem exclusively from solar active regions
(sunspot complexes)

= Not all sunspots give
major flares

= However, the ones that
do, tend to manifest
intervals of dramatic
evolution caused by
magnetic flux emergence

HMI continuum 2017-09-01T00:00:35.100 HMI magnetogram 2017-09-01T00:00:35.100
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Major flares stem exclusively from solar active regions
(sunspot complexes)

= Not all sunspots give
major flares

= However, the ones that
do, tend to manifest
intervals of dramatic
evolution caused by
magnetic flux emergence

HMIfmaghetogram 20100018 00:00:25-100

w Talk I. Scene-Setting & Overarching Considerations 13 May 2024 6



Increasing and decreasing sunspot occurrence
frequencies are the base of the solar magnetic cycle

400 Years of Sunspot Observations

Modern -350
Maximum 300 =

Dalton
Minimum

F T N Siboece R \ T T I \
1600 1650 1700 1750 1800 1850 1900 1950 2000

Sunspot observations are intertwined with the
invention of telescope (early 1600s). The first
flare, however, was observed in 1859

Giu(j."D. 93
June 23, 1612 :
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Coronal mass ejections (CMEs): what are they?

Coronal Mass Ejection (American Heritage Dictionary): a massive, bubble-shaped burst of plasma expanding outward from the
Sun’s corona, in which large amounts of superheated particles are emitted at nearly the speed of light

'

7 L e

Eruption of 2012-8-31
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A mesmerizing view of 22 years of CME activity

NASA Scientific Visualization Studio

w Talk I. Scene-Setting & Overarching Considerations



Flares vs. CMEs

» The NOAA (National Oceanic and Atmospheric
Administration) classifies flares logarithmically
via their peak photon flux at the 1 — 8 A

spectral range. Therefore,

Flare Peak photon flux
Class at 1-8 A (W/m?2)
A 10-8
B 107
C 10-6
M 105
X 10-4
X10 10-3

» Already from C-class and above,
flares virtually occur exclusively in
active regions
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» CMEs can be slow (speed < (750 — 900) km/s) or fast,
when their speed is above that limit. Their speed can
reach values > 3000 km/s

» CMEs can occur both in active regions and in the quiet

Sun

In aCtive regions’ ﬂares 1.0 I T T T IO0rl T T T T OO0l T T TR0
can occur without CMEs ™ ' ' N
(confined). CMEs cannot B -]
occur without flares : ol e zm
(eruptive flares) = L =

2 06— —
In the quiet Sun (beyond § > 2]
active regions), CMEs ¥ il A
occur without major flares w ' b oA
The larger the flare, the © 02 — m Flesults published by Yashiro et al., (2005) —]
more likely it is to be Z TR 5
eruptive (i.e., CME- 0.0 T T Y " il Hl*_
associated) “10° C 10° " 10" 10”

Flare ppf (W/m®)

What causes what, however, Is

debated Yashiro etall., ApJ, 2005; Anastasiadis et al., SoPh, 2017
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Early observations of flares and the seeds for forecasting

NUMBER OF EVENTS

N=59.9 F, "
o'k -1.84
e Major flares &
% oL shear (Hagyard et
1 5 al., SoPh, 1984)
o/ ol e Sunspot classes &
025" 50" 75 100" 125" 150" o' o o to? flares (Mclintosh,
Howard & Severny, ApJ, 1963 Drake, §§’ﬁ’ﬁfﬁ‘bxy‘{““"‘e"-’“’“z's“’ SoPh, 1990)

Zirin & Liggett, SoPh, 1987
Plotting the number of flare

events vs. their sizes, one
sees very well-defined

Major changes and loss of
magnetic energy before

and after a ‘great’ flare of ) . :
July 16, 1959 (Mt. Wilson straight lines in log-log

& Crimean Observatory) .plof[s. These p.ovyerllaws
indicate self-similarity

The more complex the
sunspot, the more likely to be
associated with flares. Picture
of a “0-sunspot” above,
associated with a great flare
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Flares as Poisson processes

- 1
-
o
-4
w10
3
10
(E/Eg) 14
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1072 o~ | 10 10 10

E/E,
Rosner & Vaiana, ApJ, 1978

Flares are:

» Stochastic relaxation (storage
and release) processes

= Physically uncoupled /
independent from each other

= Brief, compared to intermediate
times between them.

Hence, their probability of
occurrence at time tis

P(t) = ve”

This can lead to a power-law
occurrence frequency for flare energies

P(E)~ (14 2)7

Oh, the irony: instabilities triggered in a self-organized or SOC
system are stochastically triggered, and so hardly predictable
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Power laws are often attributed to self-
organized critical (SOC) phenomena,
aka 'avalanches’ of energy release
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What is prediction?

Point-in-time

, prediction

|

i Observation window » Latency Prediction window >

: Prediction

i : time

i<—> |
LAt

Refresh

time . By |ooking at an instantaneous value or a timeseries of condition(s)
/ parameter(s) of choice, determine (by a Boolean 1 [YES] or 0 [NO]
or a probability € (0,1) ) whether an event (any event) of a preset
size will occur within a preset prediction window. Need to specify:

- Predictive model using single or multiple parameters
- Flare size (typically by NOAA/GOES class)

- Prediction window

- Observation window or not (point-in-time)

- Latency, if any

- Refresh rate
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Define. Predict. Repeat.
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What is an operational (solar weather) forecast?

leracked AR (HARP)

/01

» A forecast mechanism or infrastructure that works 24/7,
365/12 with or without human intervention

» Continuous monitoring of the Sun (the earthward solar
hemisphere) and a forecast for the pre-defined events that is
existing any time

» Humans on duty, or “humans in the loop” at any given time,
to answer questions and provide information / support

» Who is forecasting flares today?

o Space Agencies around the world
o Companies / startups / contractors
o Research teams / academics

» Who is forecasting CMEs (before they occur) today?

o Much fewer entities, mainly research teams / academics e

B (new)

4 (pad before)
(pad after)

mawwmimn

» Operational missions for operational forecasting? Not so
many.

) (use past)
2 (placeholder)

Source: JSOC / Stanford U.
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Solar weather (the solar end of space weather) at a glance

Arrival of “hard" Arrival of first flare- CME arrival
Solar Flare (X, y)-ray photons accelerated particles

t t, + 8.3 min ~t,+20 min ~t,+2-4days

0
1 AU
S S ic! inq:
e PN Space Weather. Forecasting: A B Skl ML I -AMONAR 140
g | problem spanning 8 orders of A e |

Impulsive component 'l

M Sp: ; o NI Woa,, B8
SEPS - ee e ponem magnitude in space and time 1R m‘\

Particles /cm2 MeV sr sec

0 20 40 60 80 100 120
Hours from onset

SEP event

1072 10° 10° 10°
Length Scale (Mm) CME

Georgoulis etal., ASR, 2024

Flare
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The full set of solar weather problems

> In the higher-energy solar events, we have flares, CMEs and SEP events

—Flare-accelerated SEPs

& -,";Subré{h.ermal'sveeds ;7,_‘-'-""":

o

OLAR FLAR . Class/size‘

! eoeffectiveness

"« Timeof arrival

. / i
/

- .. .- Shock-accélerated SEPs—"- -

Desai &Burgess, JGR, 2008 © * © * - i t-. " Waves & Turbulence—

SEPs at Geospace

« Time of arrival
« Flux/fluence

Particles /cm2 MeV sr sec

+ Temporal profile

! I I L 1 "
20 40 60 80 100 120
Hours from onset
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SEPs at Geospace

| & ‘
Flux / fluence

We will be discussing prediction of flares
and CMEs before their occurrence (i.e.,
prediction of flares and eruptive flares)

13 May 2024 16



How to forecast

» One needs data to train, validate, and test a forecast

Validation
Sample
Training Sample

Testing
Sample

w Talk I. Scene-Setting & Overarching Considerations

Out of a multitude of existing data, one chooses three (i)
homogeneous, (ii) non-overlapping by any means and (iii)
statistically significant / representative samples

The training sample is typically one of known* (labeled)
input and output (event / no event) instances

The validation sample is typically one of known (labeled)
input and output instances, but the output is treated as
unknown and the forecast result is compared to it

The testing sample is a sample of inputs with unknown
outputs, near-real time in operational settings. The
prediction is issued and then checked a posteriori, i.e.,
after the prediction window

* Save for unsupervised and deep learning methods
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On what samples?

» Solar magnetic fields (data) and related physics-based metadata have the lion’s share

M . .- Error
; 1 2
Keyword Description Unit Formula Statistic Keyword
UEFLUX Total unsigned Aux Mx =T |B:[dA Integral EREVE
smeEsncAaM Mean angle of field from Degree = hzmmt.an[:g"':] Moaan ERRCAM
radial
—_—
sancnt  Horiontal gradient of total -t Whml= 2Ty (22) +(22)° m
MEANGHT ﬂ::;luun al pradient o G Mm |V Bun| = E1l." = I iy Maoan ERRAT
! 2 2
uEancnz  Horkzontal gradient of ver- cum-! [WEz|= L 304/ (93] + (&= Moan  ERADE
tical fleld »IV (%) + (%)
f F ]
wesncEH  Horizonotal gradient of hor- 2mm—! |[VEy| = ;, kLY ”é"" + "f" Maean ERRHH
ironzal ficld v () + (%)

_— 4 x, 1 i1 aa, !
smEAsNIED  Vertical current density mam-? T o E[: T — ty } Mean ERAJZ
roTusiz Total  unsigned  wvertical a Iz il = 5 12 |dA Integral  ERRUS]

current
smEANALF  Characteristic  twist pa- Mm~' O :%E;{- Maoan ERRALF
rametor, o &
mEANIzH  Current helicity [B: con- c?®m—' Hp o % Y B:-Jx Mean ERRMIH
tribution) '
torusm Total unsigned corrent he- ?m~! He, ., = 5 |Bz - J2 Sum ERHTLI
licity
apspszi Absolute walue of the net c®*m~' He, o |3 B:- J: Sum ERHTAL
current halicity
i} oy
savNoPr  Sum of the modulus of the a Jzyym EJ;{M|+ ZJ;:H.| Integral ERRIHT
net current per polarity
. 2
MEANPOT Proxy for mean photo- ergem~ poc Z(Bmm—ﬂml} Moan ERRMPOT
gpheric exeess magnetic en-
arpy density
rotroT  Proxy  for  total photo- ecgom? p:mgcztﬂuh*—ﬂm')_dﬂl Integral ERRTROT
spheric magnetic free en-
ergy density
: B5 g
MEANSHR  Shear angle pegree T'= % T arceos {ﬁmw_n"ﬁ) Mean  ERAMSHA
sHreTdd  Fractional of Area with Area with Shear = 4% / HARP Area Fraction

@ Taikl

Shear = 45°

Bobra et al., SoPh, 2014
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Data Source Property group No. of Relevant Adapted Related
predictors  predictor from references
SWPC Solar region summary 2 Mclntosh and Hale classes  MeCloskey et al. Mclntosh (1990)
(SRS) properties (2016)
3 Wumber, area and Lee et al. (2012)
longitudinal extend of
SunSpoLs
Catalogues GOES soft X-ray flare 4 Flare magnitude, start, peak,
events™” and end times
Surface-normal Effective connected 1 By Georgouliz & Rust
component {radial magnetic field (2007}, Geargoulis
and line-of-sight) strength® (2011, 2013)
magretograms Fractal and mulifractal 1 Froctal dimension Conlon et al. (2008)  Abramenko et al
paramelers {2003)
1 Generalized correlation Abramenko (2005)
dimension
2 Holder exponent; Hausdorff Al-Ghraibah et al.
dimension (2015
2 Structure function’s inertial
range index
Fourier and Wavelet 2 Power-law exponent Hewett et al. (2008),
power spectral indices Guerra et al. (2015)
Decay index (DI B Mean DI over PIL segments;  Lin (2008)
height of DI; ratio of PIL Zuccarello et al. (2014)
length o DI height
Magnetic PIL 5 Sum of PIL segments, longest Mason & Hoeksema
properties PIL segment (20100
1 R value Schrijver (2007)
1 WL,, Falconer et al. (2012)
3D magnetic null 6 Number of null points in Haynes & Pamell Pontin et al. (2013)
points” different height ranges (2007)
{from 2 wo 100 Mm above Barnes & Leka
photosphere) {20046
Ising Energy” b Original and partiioned Ising  Ahmed et al. (2010} Kaontogiannis et al.
energy (2018)
Magnetic energy and 11 Poynting flux and magnetic Park et al. (2010)
helicity helicity flux proxies Park et al. (2012)
Full-vector SHARP properties® 100 Horizomal gradient of & Bobra et al. (2014)
magretograms components; shear angle: (validated)
unsigned vertical corrent; Leka & Bames (2003b,
higher-order moments 2007
of time series
Magnetic energy and 22 Poynting flux and magnetic  Kusano et al. (2002) Berger & Field
helicity helicity flux {1984), Welsch
et al, (2009}
Non-neutralized f Total non-neutralized curment  Georgoulis et al. Kontogiannis et al.
currenis (2012) {2017)
Flows arcund PIL 22 Speed of Park et al. (2018} Deng et al. {2006),
diverging/converging/shear Wang et al. (2014)
Mows
Intensity images” Magnetic field gradient 3 Total honzontal magnetic Korsds et al. (2014) Kontogiannis et al.
radient {201R)

Georgoulis et al., JSWSC, 2021
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On what samples?

» Solar magnetic fields (data) and related physics-based metadata have the lion’s share

{ 2 z
smeEANGAET Horizootal gradient of total cam-!'  |VBu| = 1*1-.' E‘g-'l |:""”} + (‘””]

field e w¥
! 2 2

smEancez  Horizontal gradient of ver- cmm~! [VBz| = =¥/ (S5 + (&28=
tical fleld *EV(F) - (%)

7]

P ! 3 3
wmesncEH  Horizontal gradient of hor- cam-' |[VEy| = Jf', 5 1”.' |1':”3" ] + {nm."]

Twontal field
smeEAsN D Vertical current density

—a 1 i e
mAm T = o) E_|: e — "}

Oy
ToTusiz Total  unsigned  vertical a Iy near = 2o Idz|dA

current

smEANALF  Characteristic  twist pa- wm—?

B
Rrarar * ST
rametor, &

Bobra et al., SoPh, 2014

» Other data, mainly coronal images,
are also used, to a certain extent
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Moaan ERARAT
Mioan EARAL
Maan ERRAH
haan ERRIZ

Integral  ERRAUE]

Maan ERRALF

Full-vector
M gnelograms

Intensity images’

» The physics that we consider relevant

Ising Energy”

Magnetic energy and
hielicity
SHARF properties®

Magnetic energy and
helicity

Non-neutralized
currenis
Flows around PIL

Magnetic field gradienmt 3

PROOspaere )

Original and partitioned Ising  Ahmed et al. (20000

energy

Poynting Mux and magnetic

helicity flux proxies

Horizontal gradient of &
components: shear angle:
unsigned vertical current;
higher-order moments

of tume series

Poynting Mux and magnetic

helicity flux

Total non-neutcalized current

Speed of

diverging/convergmg/shear

fMows

Total homzontal magnetic

gradient

Georgoulis et al., JSWSC, 2021

Park et al. (2010
Park et al. (2012)
Bobra et al. (2014)
{validated)

Leka & Bames (2003b,

2007y

Kusano et al. (2002)

Georgoulis e al.
{2012}
Park et al. {2018)

Korsos el al. (2004)

LR
Kontogiannis et al.

(2018

Berger & Field
(1984). Welsch

et al. (2008
Komogiannis et al.
(2017

Deng et al. (200a),
Wang ¢l al. (2014)

Kontogiannis et al.
(2018
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And what methods?

There are mainly four broad classes of prediction methods

Mainly self-organized
criticality / sandpile models

» Physics-based

> Statistical

» Al / Machine Learning

> Ensemble

Fractal / multifractal; 4, el ;

Bayesian; discriminant L VAN )

analysis; SEA; best fit; e gk | §

0 e s (A i

decision boundary; U y:

Poisson B L LR
& TOOLBOX"

TYPES OF
MACHINE LEARNING

Supervised; unsupervised;
hybrid; reinforcement; deep

Combining methods or
probabilities

w Talk I. Scene-Setting & Overarching Considerations

13 May 2024 | 20



Performance verification: assessing forecast quality

» Performance verification: how well (or bad) my method works?

» Validation: how does it compare to other methods aiming to predict the same task?

Binary (dichotomous) forecasting

Q: Will an event of given specs happen within the

given time?
A: YES or NO
Flaring observed
Yes No
Flaring Yes True positive (TP) False positive (FP)

Predicted No False negative (FN) True negative (TN)

Skill SCO?“e(tested) — Scor C(ref.)

Score SS

N SCore(per fect) — SCOTE(ret)

W Talk I. Scene-Setting & Overarching Considerations

Probabilistic forecasting

Q: What is the probability that an event of given
specs will happen within the given time?

A: P € [0,1] 1
& 30000
> %‘En’ 20000
g 981 3 10000
e = ® 0
Reliability @
) = 06
dlag ram: e perfect reliability
observed o4 -
o
frequency Vs. ° & noresolution
forecast g 0.2 - {climatology)
e w
probability 5
0 . ' ' '
0 02 04 06 08 1

Forecast Probability p,
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Key metrics and skill scores

Binary (dichotomous) forecasting

Name Notation Formula Range
Accuracy ACC TP+ TN [0, 1]
N
False alarm ratio FAR L [0, 1]
TP + FP !
. TP + FP
Bias BIAS TPTFN [0, oc]
TP
Threat score TS TPFNSFP [0, 1]
. TP — Rgrs 1
Equitable threat score ETS TP FN - FP —Roms [ 1]
: TP + FN)(TP + FP
Using Rers = (}\#
Probability of detection POD T [0, 1]
i TP+ EN '
Probability of false detecti POFD Fp [0, 1]
ility of false detection P I TN A
. TP - TN
Odds ratio OR N.FP [0, oc]
- (TP - TN) — (FN - FP)
Odds ratio skill score ORSS —(TP TIN) + (FN-FP) [—1,1]
Heidke skill score HSS TP+ TN = Ryss (-1, 1]
N - RHSS
J + J J
Using Russ = (TP + FN)(TP + FP) V(TN + FN)(TN + FP)
True skill statistic TSS POD — POFD [—1.1]
. . log(POFD) — log(POD) — log(1 — POFD) + log(1 — POD) _
Symmetric extremal dependence index SEDI log(POFD) + log(POD) + log(1 — POFD) + log(1 — POD) [-1,1]
Appleman’s discriminant AD H if (TP + FN) > (FP + TN) [Tn:. 1]
TP—FP .
ﬁn('I'l’+}~‘1'~I)<(Fl>+TN) [—g‘;. 1]

Georgoulis et al., JSWSC, 2021
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Probabilistic forecasting

Brier score:

Brier skill score:
BS
BSref

Finds how close the probabilistic forecasting is
to binary forecasting (very stringent test)

BSS =1 -

13 May 2024 22



Key metrics and skill scores

Binary (dichotomous) forecasting

Heidke skill score HSS
True skill statistic TSS
Symmetric extremal dependence index SEDI
Appleman’s discriminant AD

USil’lg Rnss =

TP + TN — Ryss
N — Ryss

(TP + FN)(TP + FP) + (TN + FN)(TN + FP)

log(POFD) — log(POD) — log(1 — POFD) + log(1 — POD)

N

POD — POFD

log(POFD) + log(POD) + log(1 — POFD) + log(1 — POD)

TN — FN

FP + TN

TP — FP
FN + TP

if (TP + FN) > (FP + TN)

if (TP + FN) < (FP + TN)

[-1.1]

(-1, 1]
FN
[_ﬁ’ 1]

W Talk I. Scene-Setting & Overarching Considerations
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Operations-to-Research and the R20-0O2R loop

» Successive iterations optimizing research and operations

» Physics-based (research) parameters are routinely used for SWx prediction (operations)

PR A RN S Successful verification

o~
——————————Tl L S alaitt=t="] | Pl ————

Research :&: :}% % %

= Can first-attempt operations be improved, and how?

> By achieving interpretable results
Research Operations that can then be fed into improved
< (optimized) research

W Talk I. Scene-Setting & Overarching Considerations 13 May 2024
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Some simple, early ideas: Poisson forecasting

flares per unit time interval is

» From the Poisson distribution, the probability of observing k _ . ~ -

..
ék Y £: the number of events " _ J JI -I
PE (k) — — € expected per unit interval 00 e ‘ _

» The probability of getting at least one flare (k= 1) is

Py(k>1)=1—Py(k=0) k T l N

> Because P, (k=0) = e - {, having an idea of £, we obtain

Pg(kz 1) = 1—6_6 |
Working on the expected rate of flares in case a ° 0.
certain sunspot class arises (Mclntosh, SoPh, 1990) | I

www.SelarMenito r.org Gallagher etal., SoPh, 2002
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Some simple, early ideas:

» Bayes’ theorem:

P(BIA) likelihood
P(AIB) |= P(A) X ==
( I ) ( ) X P(B) marginal

posterior
freecodecamp.org

> (Simplified) Laplace’s rule of succession

F + 1 pthres(l _ pthTeS)

DPthres = 5pthres —

k+ 2 k+3

*  Pines - the flare probability if the predictor exceeds
a certain threshold
* F: number of predictor values above the threshold

that were associated with a flare
« k total number of predictor values above threshold

Jaynes 2003; Wheatland, PASA, 2005; Georgoulis, SoPh, 2012
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Bayesian reasoning

X-class flaring probabilities

M class flaring probabilities

1.0 S JORR By [t e . kA LR Sy Rk et | AL 1047 T LSS AL A B B R B S R A
2 [~ P © © Unsigned magnetic flux ®.. (@ 12 C d
S8 08 o o Fractal dimension D 13 08}

% 3 Power spectrum index « :.§ C =
a - 48 k-
5 06 5 086
S 18 |
%0'4R ;g 04 |- .
5 15 E 1 1
202 1 § 02— - : i
N - 314 -y I o i
T~ 2 € T % 5.
zzti:!fI:ﬁ—:—::l‘?li | 7' T.'T‘ ‘lnxil
e I P r— T ™ Y'T ™7 T | B R . : T T Y V T I TrT I T 7 T ] ™TT r
£ (b) 42 C (e)
B 13 08 - ki
3 08 1§ 08|
9 ,.9 —
Q i0 +
® 06 [ 18 06 [ .
3 E 18 = - .
2 04 B 18 04— r o 3 * r 1 -

: ¥ i = -
8 : 18 L : b o
3 L $ e -3 = — B
202 T 12 02 " N —
2 E U 1% VIE - R S slRReTel £ o \ Bk

Mvvt.4r +bosF 47, % |7 C | | PR | . 5 b
.,: T ] T 17T ] T T T T T :C ? ; T T T I L [ ™ [ T ;?]—‘
E PO 48 e AU
@ -] ]
E 08 —E 08— e
- ™~ - ¥
S F i 18
2 06 [ ¥ [ |z 06[ L N
5 - 3 13 C i { A
g F r 12 _.F g .
S 04— g — 04— = " -
2 = 18 C - n
- 1 1= -

g 0.2 — - 7<§ 02 = e L
2 I o=t o oottt F o oo +2 - -]
8 0.0 it | Y T B L P &2 :8 00’ Rl [ TR S S S W |

0.0 0.2 0.4 06 08 1.0 0.0 0.2 0.4 06 08 1.0

Normalized threshold

a-effort.academyofathens.qar

Georgoulis et al., SoPh, 2012
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https://a-effort.academyofathens.gr/

Al / ML and DL in forecasting: why using them?

» The objective is to distinguish between eventful and uneventful parts of the distribution in parameter space

» Each dimension of the parameter space is one of the predictors (so we are talking about 10s and 100s of dimensions)

» Dimensionality reduction: from full n-dimension hypervolumes to n’ < n —dimension hypersurfaces

(a) Swiss roll dataset.

van der Maaten etal., 2009

W Talk I. Scene-Setting & Overarching Considerations

(d) Broken Swiss roll dataset.

(c) Twinpeaks dataset.

(b) Helix dataset.
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Machine Learning

A definition: Machine learning is a natural outgrowth of
the intersection of Computer Science and Statistics that
seeks to answer the following question:

‘How: can we build computer systems that
automatically;improve with experience; and.
what are the fundamental laws that govern all
learning processes 2’
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Multi-layer perceptron

Tom M. Mitchell’s “The Discipline of Machine Learning’ . o
(Carnegie Mellon U., 2006) b pom

Machine learning can be:

» Supervised: trained on labeled samples

» Unsupervised: trained on unlabeled samples

» Hybrid: combining both elements, training on data
that can be both labeled and unlabeled

Random forests ‘
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“\vzf”
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Deep Learning

A definition: Deep Learning is a particular kind of
machine learning that achieves great power and flexibility _
by representing the world as a nested hierarchy of » Why deep learning?

concepts, with each concept defined in relation to simpler
concepts, and more abstract representations computed in
terms of less abstract ones.

Deep learning

Goodfellow, Bengio & Courville’s ‘Deep Learning’ (MIT Press,
2016)
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Unsupervised, and hence hard to interpret

Two questions of capital importance:
Amount of data

» Do we have enough data for DL applications?

> How to interpret? Credit: Andrew Ng
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Interpretability of performance: how to?

* |n non-interpretable models, including DL, you can forger about parameter ranking

» Hard to interpret why a classification can be radically different

Test image Evidence for animal being a Siberian husky Evidence for animal being a transverse flute

ga E
i But SWx prediction will soon become
i* a human-sensitive issue, as well

(N
LR cesa

Fig. 2 | Saliency does not explain anything except where the network is looking. We have no idea why this image is labelled as either a dog or a musical K
instrument when considering only saliency. The explanations look essentially the same for both classes. Credit: Chaofen Chen, Duke University / e iR

RUdiﬂ,Nat.lﬂtel.,2019 \ \\ ‘ ‘ / /
= |n more human-sensitive decisions, ethical problems \ WEAPONS ur/d AITEMIS Moon Vlllage
. MATH I]ESTRIIEIII]N
appear m&lsanCTNE machine intelligence & -
~ ¥ j
Stop explaining black box machine learning :ow X i
models for high stakes decisions and use ’ EATHY[]NEI[
interpretable models instead iy 3

L7 1T WA
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A potential hope: physics-informed neural networks and
similar methodologies

Neural Networks trained to solve supervised learning tasks while respecting any given laws of physics described

by general nonlinear partial differential equations, Raissi et al., J. Comp. Phys., 2019

a b
Tomo-BOS setup 3D temperature data

PINNs as PDE solvers: PINNs are yet to be applied for SWx
forecasting, but have been recently used successfully for
ultra-fast NLFF field extrapolations!

(a) @ sample points @) Forward pass © Derivatives @ Optimize )

" M\ 0OyyB V-Bl =0
Random
)
/ z

I(Vx B) x B|| =0

Physics-informed
neural network

B(x:}'- 0) "~ BO(xvy)

. 2011-02-12 »2011-02-17
Karniadakis et al., Nature Rev./Physics, 2021 i Jarolim et al., Nat. Astron., 2023
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Conclusions — Part |

0 We discussed the problem of prediction of solar flares and CMEs and the methods applied to
this problem

O One key element of the problem is interdisciplinarity: solar weather prediction is too important a
business to be left to solar physicists alone

O Forecasts (any forecasts) cannot stand without a robust assessment of their quality

O R20 and O2R are pursuits of capital importance. Their loop ( R20 <> O2R ) is essentially an
optimization loop and is based on, and feeds from, physical interpretation

1 Machine and deep learning are prime tools on this, but we are lacking on interpretation. Hence,
the R20 — O2R loop is still not achieved sufficiently

O Methodologies such as PINNs, Physics-Enhanced Deep Surrogates (PEDS), etc. can be a key
to achieving the R20 — O2R loop

O Success or failure of ML/DL interpretability will depend on their success to be used as solvers of
partial differential equations. Space physics is built around PDEs.
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